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Alntrae1--On the basis of the unsteady Stokes' equation the problem of the flow field induced by an 
oscillating disk fully immersed in a semi-infinite viscous fluid with a surfactant surface layer is solved. The 
effect of the insoluble surfactant on the hydrodynamics of the oscillating disk is found for varying values of 
the ratio of the coefficient of the surface shear viscosity to the coefficient of viscosity of the substrate fluid, 
and depth of the disk below the surface. A new theoretical analysis for obtaining the surface shear viscosity 
is suggested. 

!. INTRODUCTION 

The motion of a particle moving in the presence of a fluid-fluid interface is of significant 
importance and interest in chemical engineering science and applications. It is well known that 
ff the bulk phase of a flow contains substances having great affinity for the fluid surface the 
composition of the interfacial region is significantly different from that of bulk phase. Recent 
evidence has indicated that the films forming at crude oil-water interfaces are the result of 
naturally occurring surface active components in the crude oil rather than oxidation products 
resulting from exposure of the oil to air. 

The rheological properties of the surfactant films at liquid interfaces have been investigated 
by numerous authors. For insoluble surfactants the effect on the dynamics of the substrate fluid 
is described by means of the surface shear viscosity. Boussinesq (1913) was the first to propose 
a two-dimensional analog of the three-dimensional Newtonian fluid to explain the retardation in 
the terminal velocities of drops and bubbles, the so-called "rising bubble paradox". Scriven 
(1960) and Slattery (1964) formulated the mathematical equation required to describe the 
dynamic conditions that exist at an interface with a surface viscosity. 

In order to quantitatively assess the role of surface viscosity it is necessary to be able to 
measure the surface viscosity. The first measurements of surface viscosity apparently were 
made by Wilson & Ries (1923), who employed a torsional or oscillating disk type of surface 
viscometer. Langmuir & Schaefer (1937) employed slit and canal viscometers to study insoluble 
monolayers. Davies & Rideal (1963) presented a concise description of the methods that were 
developed through 1961. It is interesting to note that none of these methods permit the 
mathematical analysis which is needed for an exact relationship between surface viscosity and 
the experimentally measured variables. 

Burton & Mannheimer (1965) developed the "deep-channel surface viscometer" which 
permitted the mathematical analysis necessary to relate surface viscosity to experimentally 
measurable parameters. Burton & Mannheimer's analysis is restricted only to Newtonian 
interfaces but Pintor et al. (1971) showed that the "deep-channel surface viscometer" can be used 
to measure the surface viscosity of solutions of macromolecules (polymers). 

Goodrich (1969), Goodrich & Chatterjee (1970) and Shaft (1978) have examined the dynamics of 
a rotating disk viscometer. In order to measure the surface viscosity the apparatus consists of a thin 
disk inserted into the plane interface between the surfactant film and the underlying substrate. The 
torque necessary to maintain the slow steady rotation is measured and compared with that given in 
terms of the ratio d/~ by the theoretical formulae derived from the steady Stokes' equations. Here 
is the shear surface viscosity and ~ the bulk viscosity. The comparison enables evaluation of the 
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surface shear viscosity. Since these methods are insufficiently sensitive for obtaining the small 
quantities of shear viscosity it is of interest to have an alternative configuration of a completely 
immersed rotating body in the substrate fluid. This system avoids the evaluation of film torques 
such as those that act on the edge of the disk. 

Recently Shail (1979) has suggested a new theoretical analysis for obtaining of the values of 
surface shear viscosity. 

In the present paper on the basis of the unsteady Stokes' equation we have solved the 
problem of slow oscillations of the thin circular disk immersed in a semi-infinite fluid whose 
surface is contaminated with an immiscible surfactant layer. Using the Williams' method (1962) 
we reduced this problem to the solution of a Fredholm integral equation of the second kind. 
The reduced integral equation was solved both asymptotically and numerically. Finally the 
problem of computing surface viscosity from obtained azimuthal velocity and the experimental 
results is discussed. The numerical results are shown graphically. 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  

Consider a semi-infinite incompressible viscous fluid on whose plane horizontal surface is a 
thin layer of immiscible surfactant a few molecules thick. We denote by e the surface shear 
viscosity of the surfactant film and by v the kinematic viscosity of the substrate. A thin circular 
disk fully immersed in the fluid is forced to execute a torsional oscillation about its vertical axis 
with frequency to. Let (p', ¢, z') be cylindrical polar coordinates such that the z'-axis coincides 
with the axis of the disk, the disk wall lies in the plane z '=  0 and z' is measured vertically 
downwards. It is assumed that the radius of the disk is R and the equation of the plane 
horizontal interface is z' = - h', where h' > 0. We shall suppose that the circular disk oscillates 
with velocity Uo ei"t and seek a solution that is independent of ~o. With R as a typical 
geometrical length, to ~ as a typical time and Uo = ~oR as a typical velocity the dimensionless 
unsteady Stokes' equation and continuity equation have the form: 

M2 0.._vv = _ ~Tp - rot (rot 13) [1] 

div f = 0  [2] 

where t~ = (vp, v,, vz) is the velocity, p the dynamic pressure, ~- = tot is the dimensionless time 
and M 2 = (toRZ/v) the rotational Reynolds number. If one takes into account only the primary 
flow in the ¢ direction then from [1] and [2] it follows that the pressure p is constant throughout 
the fluid and the velocity v, satisfied the equation: 

or ap p Op 
[3] 

By setting: 

v,(p, z, r) = v(p, z ) e  i~ [4] 

and substituting [4] in [3] the equation [3] reduces to solving the equation: 

a2v + l av + O % _ ~ _ f 1 2  v = O  [5] 

where 13 2 = iM  2. 
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Thus, [5] yields 

From [5], we have 

0 1 0  
=/~ v - ~ - ~ .  [9] 

Therefore, from [7], it follows that 

Ov A/02v ~2 ~ _  
~---~- ~-~-~-- p v / -  0 at z = - h. [Ta] 

It is clear that A = 0 corresponds to a clean surface and as A -* ®, [7a] is equivalent to 

02v ~2 
-~ - f -  p v = 0  at z = - h. [10] 

--~ ( - l~ (Pv)~=0  a t z = - h .  [11] 
Op \p Op / 

The general solution of this equation is 

B 
v(p, - h  ) = Ap + -- 

P 

where A and B are arbitrary constants. Since v(0, - h) = v(~, - h) = 0, one gets A = B = 0 or, 

when A ~ = ,  v(p,-  h)= O. Therefore surfactant acts as a rigid plane boundary. 

It follows by direct verification that the function 

w(p, ¢, z) = v(p, z) cos ~p [12] 

satisfies [5], [7] and [8] if v(p, z) does. So [5] and [7] reduce to the following boundary value 
problem: 

(V 2-/32)w = 0 [13] 

oN THE FLOW toLD ~SDUCED BY AN OSC~LL̂ '~N~ D~SX 

The boundary conditions are: 

(1) No slip velocity on the disk wall 

v(p,z)---p as 0 _< p _< l, z -- 0. [6] 

(2) A balance between the substrate stresses on the adsorbed film and the internal film 

stresses (Scriven 1960) 

~-~ + ;t 7p (pv) = 0 at z = - h = - ~ [7] 

where ,~ = (d/zR) is a dimensionless parameter. 

(3) Since the substrate extends to infinity 

v--*0 as f + z 2 - *  oo. [8] 
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W = p COS ¢, Z = 0 [14] 

w = 0 as p2 + Z2.._>~, [15] 

V 2= &2 + 1 & 82 1 &2 

3. SOLUTION OF THE PROBLEM 

The Green's function G(x, ~) appropriate to the boundary value problem [13]-[15] is 

(V 2 - B2)G(x, ~:) = - 4,rS(x - ~:), x --- (p, z, ~¢), ~: = (pt, zl, ,1) [16] 

G(x, ~)-~ 0 as f + z 2 ~ 
ple + Zt ~ oo 

where (x, ~:) E T and T is the region in which we seek the solution of the problem [13]-[15]. 

The integral representation formula for w(x) (Kanwal 1971) is 

f W(X) ---- -- ~1 G(x,~)c~Tw_w(~)ds,+l_J_fdll 1 4,/7- 28 Pt c ° s  ~1 ~nl  (x' ~:) a s '  

0w &O (x, ~:)} dS'  + fs, f [17] 

where S and St are the disk surface and the plane horizontal surface z = - h respectively and 

(cg]Snt) denotes differentiation along the outward drawn normal to S. On the surface St we have 

(~ [ , - , . ) / av  _ O:v'l lOG ") 0:G ° ) \ /  
Ajo [ ° ['~Pl ~- Pt ~Pl ,] -- V (-~Pl + a t o p 1  )1 d p' [18] 

where G")(p, z; plz~) is the coefficient of cos (¢ - et) in the Fourier expansion of G(x, O. Since 

v ( ~ , -h )  = G")(p, z; ~ , - h ) =  0, v ( 0 , - h ) =  0 after integrating by parts one obtains that the 

expression [18] is equal to zero. 

In view of Green's theorem we have 

oo o, o 
Pt cos ¢1 ~n~ u~ = O(x, ~) ~ (Pl cos ~ol) dS'  = 0. [19] 

Therefore we may represent w(x) as 

w(x) = fs f O-(Oa(x, e) cos dS' [20] 

where 

cr (O = - ~ p, 

Then the boundary condition on S gives a Fredholm integral equation of the first kind for 
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determining o'(O: 

f f pcosc,=jsjO.(oo(x, ocos~ldS, x E s. [21] 

From the relation [21] it is easy to deduce that 

p = Ir f¢  o.(pj, zl)G<l)(p, z; Pl, zl)pl rill [22] 

where C is the bounding curve of S' in the meridian plane while dll denotes the element of the 
arc length of C. 

For a thin circular disk we have 

Io' p = ~" o'*(01, O)G(1)(p, O; plO)p= dpl, 0 < p -< 1 [23] 

o'* = 2o'. 

The tangential stress component ~ on the surface S, in the direction of ¢ increasing, is 

a 

Furthermore, considerations of potential theory show that the source density o'(p, z) on S is 
related to v by 

~ a ( v \  

The physical quantity of interest is the frictional torque which is given by 

N=e'~ fs f  oe~n (~)dS=-S~2e" fcO~o.(O,z)dL 

Therefore, for the disk of radius I: 

N = - 8Ir 2 e" p2o.,(p, 0) do. 

Since the fundamental solution of [16] is (exp ( -  flr)/r) we shall have 

O(x, ~:) = exp ( -  ~ d  + Ol(x, 0 
r 

where 

(V 2 - ~2)G|(X,  ~) = 0 

and Gl(x, 0 satisfies the boundary condition [7a] 

[a~O 

[24] 

[25] 

[26] 
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Here 
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r = ~ / ( p 2  + p12 _ 2ppl COS (¢ - ~l) + (Z - Z02). 

According to Watson (1966) we have 

exp ( - fir) fo ~ Jo(p~/(p 2 + p l  2 - 2ppl cos ¢)) e_l:_~lv.(p2+,2)p dp. 
r = ~/(pZ + )~) 

Here 

J o ( p ~ / p  2 + p l  2 - 2pp~ cos ~)) = ~ (2 - 8oj) cos  j ( ~  - ¢ , )J j (PP)Jj(PO,)  
j=0 

where Ji are Bessel functions of the first kind and 6oi is the Kronecker delta. 
Thus 

Jl(pp)Jl(Ppl) e-l~-~,lv(p2+~2)dp 
2 ~o ~ p V(p2 + ~2) 

is the coefficient of cos (~ - ~1) in the Fourier expansion of the fundamental solution of [16]. 
The next step is to find the coefficient of cos ( , -  ,1) in the Fourier expansion of Gt(x, ~). 

Applying the method of images the required additional coefficient is 

2 fo ~ p JI(PP)J1(P~I)~c/(p2 + ~3 ) ~/(p2~/(P2 ++ ] 32)/32) +- Ap2Ap 2 e (~+~'+2h)~/(r2+'2) dp. 

Therefore 

fo x JI(PP)JI(PPl) [ G(I~(P, z; Pl, ZO = 2 P \/(pZ+/32) e -I~ z'l~/(P2+t~2) 

+ ~/(p2 +/32)_ ,q,2 ~--+z,+2h)~/(,2*02)'l .,_ 
V'(p2 +/~z) + ,~p2 ~ j uv. 

Thus, [23] yields 

p = ¢r fol~r*(p,O)2[fopJl(PP)Jl(PPO(l+~/(p2 +/32) V'(p2~/P2+fl2)-AP2e-2hv('2+'2)~dP]pldPl+/32) + Ap2 ] [27] 

where 0 < p < 1. 
Imposition of the no-slip boundary condition on the oscillating disk leads to a Fredholm 

integral equation of the first kind whose solution has an integrable singularity at the disk edge. 
Further, using Williams' method we shall reduce [27] into a Fredholm integral equation of the 
second kind for a derived function which is regular. 

By setting f(p) = 2¢rpcr*(p, 0) we can write [27] as 

\ v~p  /~/+,~P2 ]V'(p2+/32)  

-l]J1(pp)J,(ppDdp}dp, [28] 
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where 

Let  

Ko(p, Pt) = ~ JI(PP)JI(PPl) dp. 

fl pilf(p1) 
S(p) = pjp V(pl e _ p2) @I. 

Then the integral equation [28] becomes 

Io' S(o ) + L(O, oI)S(Ol) do1 = 20 

which is a Fredholm integral equation of the second kind in S(p). Here 0-< p -< 1 and 

L(p, pl) ~- 2 f~ [p(1+ ~/(p2 + ~2)__ ,~p21_2h~/(p2+,O2)~ I ] ~/(p2 + ~2) + Ap2" ] ~/(p2 + 02) -- 1 sin pp sin PPI dp. 

Therefore 

and 

2pi d f l  S(p) 
fCpl) = dp 

The kernel L(p, Pl) can be written as 

1 {Q(fp _ pl l ) -  Q(p + pl)} L(p, pl) = 

where 

Q" . f~ ,~/(p2 + 02)_ A p2 e-2h~/(P2+~2) 
tv) = )o P~/(p2 + 02) + A p2 ~/(p2 +/~2) COS vp dp 

fz p _ x/(0e + pC) 
+ Jo "V/(p e + 02) cos vp dp = II + 12, 

12= foP-"~ / (p2  + p2) - S~ - fl2 c°s vp dp i~r v(pe + 02 ) cos vp dp - ~/(p2 + 02)(p + ~/(p2 +/32)) = - 0 "~ Jl(iOv) 

So ~/(pe + 02) _ Ap2 e-2h~/(p2+,82) f® p e-2h~/(P2+*62) 
II  = P ~/(p2 + 02) + Ape ~/(02 + pC) cos vp dp = - Jo ~/(02 + pC) cos vp dp 

p e -2h~/(p2+02) 
+ 2 f o  ~/(pe + 02) + Ape cos up dp = Ii + 2I~ ~ 

lfo fo 11 = - ~ cos up d e-ehN/(P2+~2) - 1 -2h~ -~v e-2hN/(P2+~°2) sin vp dp. 

[29] 
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Therefore 

Q(v) = - I~ + I~ + 2I~ ~. [30] 

4. N U M E R I C A L  AND ASYMPTOTIC RESULTS 

When h ~> 1 and Mh = 0(1) we set flh = c and hp = t. Then 

j ' f  fo ~ f t v  tar 3 _~1l /~ = e 2hVtp2,~2, sin vp dp = e-ZVf':+c2) I-h- - ~ + 0(h -)J ~ dt 

/3 /33 
=~_~(2c+1)e-2 , ,  4 ~ M ( 4 c 2 + 6 c + 3 ) e - 2 c + O ( h  6) 

C2/3 C4/33 C6/35  . . . .  8- 
iflJ,(ifl/3) = - - ~ - ~ -  l--(-~- h--ri-~ + o{a ). 

There are three cases to be considered: 
Case (i). The suffactant film has small surface shear viscosity compared with the viscosity 

of the bulk fluid, i.e. A = 0(h-t). 
Case (ii). The shear surface viscosity e and the viscosity of the bulk fluid p. have the same 

order of magnitude, i.e. A = 0(1). 
Case (iii). The film is very viscous compared with the bulk fluid, i.e. A = 0(h) 4(a) Let 

h = 0(h -l) and hh = r. Then 

fo ~ P e-2hV(°:÷¢:) l ~o~ t e-2~/,2÷c'~) ( r2t ' 
h2x/(t 2 + c 2) + h4(t 2 + c ~) /1 a = X/(p2 + #2) + hp2 cos/3p dp = -~ X/(t 2 + c2 ) 1 - rt2 

v 2t: + /34t4 + rt4v2 ) 
~ 2 - ~  2h4~/(t2'+ c 2)+0(h-6) d t = c ° n s t - 2 T a A ( 2 c  + l)e-:C 

V 4 r/3 2 f 1 ] 
+ ~ (4c 2 + 6c + 3) e -2c + ~ t8 ( - 4c3 + 2c2 + 6c + 3) + c4E1(2c) + O(h-7). 

4(b) Let )t = 0(1). Then 

~'~ p e -2hx/(p2+/32) [ ~  t e -2~/(12+c2) [ /32t2 Av2t 4 
I'a = Jo V('P2 + fl2) + AP 2cOs/3pdp=.o -h X/ ( t2 + c2) [c°ns t -2 -h - f+  2h3V ( t2 + c2) 

vnt 4 A2t6u 2 A3tSv 2 \ 
+ 2 - ~  - 2h4(t 2 + c 2) + 2hS(X/(t 2 + c2)) 3 + O(h-6)) dt 

U2 "" -2c A/32 + 3 )  + caEt(2c)] O(h--5). = c o n s t -  8--~ (2c + 1) e + ~-~ [~ ( - 4 c 3  + 2c2+6c + 

4(c) Let a = O(h) and (Mh)= r. Then 

e-2~/(t2+c2) [ /32t2 v4t 4 \ /32 /34 
0(h-6)) dt = const - A3 A5 + 0(h  -7) I'A : f o  -h X/(t2 + c2)+ rt 2 t l  - 2 - ~ +  2--~ + ~"~ + 2--~ 

where 

A3 = X/(t 2 + c2 ) + rt2 dt; A5 = X/(t 2 + ca ) + rt 2 d t ,  E~(2c) = ~ dq. 
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The asymptotic expansion of L(v, w) in these three cases is: 

4(a) A = 0(h -I) 

L(v, w) = -~, 

~rc2w ,trC4w(302+ w 2) C6W(5V4 + 10v2w2+ W4)1r vW .- e-2c 
2h 16h 3 - 192h5 + ~ (2c + 1) 

5vw(v2 + w2) (4c2 +6c + 3)e-2~-~h r [~(-4c3 + 2c2 +6c + 3)+ c4El(2c) ] 
- 12h4 

+ 0(h -~) ,v ~ w 

,ffc21) ,rrc'l i)(3 w2 q-/) 2 ) c21)(5w4+|Ow21)2q-1)4)lr f)w.~ e_2c 
2h 16h3 - 192h 5 -r ~ [zc + 1) 

_5vw(v2 + w2) 2 8vwr [~ ] 12h 4 (4c + 6 c  + 3 ) e - 2 c - - ~  (-4c3+2c2+6c+3)+c4E1(2c) 

+ 0 ( h - 6 ) ,  v < w 

4(b) A = o(1) 

f ~rc2w ~rc~w(3v2+w 2) vw.-  ±,~^_2c 8vw 
L(v, W) t 2h 16h3 + ~ - ~ ( 2 c T  ~j~ - '~-~- 

x [ ~ ( _ 4 c 3 +  2c2+6c+3)+c4El(2c)]+O(h-4)}-~-~as v>_w 

L(v, w)= { 1rc2v ~rc%(3w2 + v2) ' v w "  e_2C 8Avw 
2h 16h3 ~-~-  (zc + 1) - - - ~  

× [~ (_4C3+  2 c 2 + 6 c +  3)+c4El(2c)]+0(h-4)}--~as v<w. 

4(c) ,~ = 0(h) 

1 

L(v, w) = 

e. Irc2w ,ffc2w(al)2.k w2) c6w(51)4 + |Ov2w2 + w4),lr 1)w 
2h 16h3 - 192h 5 - ~-~ (2c + 1)e -2c 

+ vw(v z + w e) + 8vw 16vw( v2 + w2) A ± nt~,-6~ 
12h 4 " ~  A 3 -  24h 4 ~5 - ,,~', J, v -> w 

q.rc2/) ,/1.c41~(3w2@ D2)..[. c6/)(5w4+ 10v2w2+ v4)~r vw e_2C 
2h 16h 3 192h 5 - ~-~ (2c + 1) 

vw(v2 + w 2) 8vw . 

+ 12h 7 ~ A3 - 
16vw(v2 + w'2) A5 + 0(h-6), v -< w. 

24h 4 

It was found that 

fO I N = - 16 e i" xS(x) dx. [3H 
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The Neumann iterative solutions of [29] and the torques in the above three cases are 

4(a) The case X = 0(h ~) 

2 [ o~-~t2 ~) o~4,~ ~ 3 ,  ~, oc~ s{~)=2~-~  -~-g  - -1--~,q -+~--~6 d+~ }-I--9~ 

(~ v 4 1 ) + ( 2 c + l ) e  -2c 5(4c2+6c+3)e-2':[v 3 v\ 
X q_~ /)2 nt..~ __ ~. ~ /)6 6h 2 v 12hZ 1 ~  + g)  

v r  
gh~ [( - 4c 3 + 2c 2 + 6c + 3) e 2~ + 8c4E~(2c)] + 0(h-6)] 

{_1612 2 [ ~rc 2 rcc 4201 7rc6 1 ( 2 c + l ) e  ~2~ 1 (4c 2+6c+3)  e -2¢ 
N =  (3 -~-h  15h 1--~280 378h53 + 18h 2 18 h 4 

r 1 }} 1-~[(-4c3+2c2+6c+3)e-Z"+8c4El(2c)] +0(h -7) e ~,. 

4(b) The case ,~ = 0(1). 

4(c) The case 

S(v)= 2 v - - ~  [ rcc2 
~(~ ~) ~4 + T _ ~ 5 + ~ 6 )  

+ (2c + 1) e-2" ~ ] 
6h 2 v - [( - 4C 3 + 2C 2 + 6c + 3) e -zc + 8c4Et(2c)] + 0 ( h  -4) 

{ {2 2 [ 7rc2 rrc4201 (2c+1)e-2c a 
N =  - 16 -j-~-~ 15h 1-g~2--~ + 6h 2 iSh 3 

x [ ( - 4 c 3 +  2c3+6c+ 3) e- 2" + 8¢4 El(2c )] ] + O( h-5) } } e i~. 

2 [_7rc 2 (v_£'~ 7rc 4 v 3 1 vs + v6 ) 

192h s +~ /)2 +~--4~ v ,]-~-~i(2c + l)e-2c + l-~-~-y+~) 

8v 16 [v 3 v\ ] 
+g~ A, -2 -~  1,3 + ~) At + 0{h -6) 

{ {~ 2 [ n'c2 l zrc 4201 ~'c6 1 (2c+1)e  2c 
N =  - 16 - ~ ~  h 15 1~-~280 37 -~3  18h 2 

, ~ 4 A,]+o,~ q}e',  
+ 3-~. + 9-~ a~- 4-~ 

In the case of arbitrary h and ,~ the integral equation [29] is solved numerically by using 
Gregory's integration formula (Krilov ¢t al. 1976). An iterative procedure is organized at which 
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Table 1. 
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R~ 

O. 0.0~5 0.05 

8.134 8.295 8.444 

0.848 0.88I 0.912 

5.552 5.242 5.327 

0.075 0 . I  0.25 0.5 

8.585 8.758 9.385 I0.579 

0.943 0.972 1.127 1.333 

5.404 5.478 5.839 6.255 

0.75 

50.744 

1.495 

6.540 

5. 1.25 1.5 1.75 2. 5 50 6-'o 

~4 11.170 I I .505 11.775 I I .997 I 2 . I 8 7  I3 .260i14 .287  I4.507 

~ 1.526 1.734 1.825 1.904 1.972 2.396 2.88I 2.993 

T-~ 6.749 6.909 7.035 7.538 7.223 7.682 8.(;65 8.I42 

Table 2. 

0.00 0.25 0.5 0.75 

~¢ 7.0~8 8.843 I0.07 I0.99 

T,,, 0.904 1.453 1.923 2.334 

~ - ~  4.330 5.226 5 . 7 6 1  6.52I 

I 

I5.712 

2.694 

6.377 

N./v 
• Nto I 

¢.T 

(J 

0 

~2 

Z'=O 

o ~jz o,4 o.6 o,e ~.o ~.2 ~.÷ 

Figure I. Effect of ~ on N/N(O) for various values of ¢ at h = 0.25. 
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Figure 2. Velocity profiles for values of A at h = 0.25 and z = 0. 

a first approximation to the solution is found by neglecting the difference correction. After 
calculating S(p) at the n pivotal points the torque N is computed by Simpson's rule. Detailed 

calculations are made at h = 0.125, h = 0.25, z = 0, (7r/4), (7r12), M = 0.45 and different values of 

A. The results are shown in Tables 1 and 2 and Figure 1. We observe that the increase in the torque N 
is more rapid for surfactants with small ,L Since the measurement of the azimutal velocity of 

surface particles was proved to be a better experimental method for determining surface 

viscosities than torque measurements the surface velocity for varying h and A is computed. 
The function v ( p , -  h) can be found by using the formula 

[ f ~  e-h'v/(p2÷~3 -~) v(o,-h)=4 fo'S(x)kJ ° V(p2+ 2)+Ap2PJ,(PP's'npxdp)dx. [32] 

Then the azimutal surface velocity v¢ is given by 

v~(p, - h) = cos r real v(p, - h) - sin zI,,v(p, - h ). [33] 

Since we know the values of the function S(p) at the pivotal points it is easy to compute the 
surface velocity profiles. Figure 2 presents the variation of the surface velocity v~(p,- h) with p 

as ~ is varied. 

5. CONCLUSION 

The paper deals with the flow field induced by an oscillating disk fully immersed in a 
semi-infinite viscous fluid with a surfactant surface layer. The problem was solved on the basis 

of the unsteady Stokes' equation for the azimutal velocity. 
The boundary condition on the surfactant film includes the ratio ,~, of the surface shear 

viscosity ~ to the bulk viscosity tz, of the fluid. Imposition of the no-slip boundary condition on 
the oscillating disk leads to a Fredholm integral equation of the first kind whose solution has an 

integrable singularity at the disk edge. 
Using the Williams' method we reduced the problem to the solution of a Fredholm integral 

equation of second kind for a derived quantity S(p) which is regular on [0, 1]. The last equation 
is solved both asymptotically and numerically, and the resistive torque on the oscillating disk 
and surface velocity profiles are computed. The effect of the insoluble surfactant on the 
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hydrodynamics of the oscillating disk is investigated for varying values of the ratio A and the 
depth h, of the disk below the surfactant film. 

An acceptable procedure for determining the surface shear viscosity ~, would be to measure 
the azimutal velocity v~ of the suitably marked fluid particle in the surfactant fluid surface and 
to use the formulas [32] and [33]. 
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